

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 SWITCHING THEORY AND LOGIC DESIGN

(ECE Branch)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u> Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1	a)	Convert $(11010.11)_2$ into decimal.	[2M]	1	
	b)	What are don't cares?	[2M]	2	
	c)	List the applications of PAL and PLA.	[2M]	3	
	d)	Compare latch and flip-flop.	[2M]	4	
	e)	Distinguish between Moore and Mealy Machines.	[2M]	5	

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL		
		UNIT-I					
2.	a)	Represent the following numbers in decimal number system: (i) $(1010101)_2$ (ii) $(26.24)_8$	[5M]	1			
	b)	Implement the Boolean function: $F = xy + x'y' + y'z$ using with NOR and inverter gates.	[5M]	1			
		OR					
3.	a)	Represent +35 and -35 in sign magnitude, sign 1's complement and sign 2's complement representation.	[5M]	1			
	b)	Simplify the following Boolean function into (i) sum-of-products form and (ii) product-of-sums form: $F(A, B, C, D) = \sum (0, 1, 2, 5, 8, 9, 10)$	[5M]	1			
UNIT-II							
4.	a)	Simplify the following Boolean functions, using <i>Karnaugh</i> maps: F = A'B'C'D' + AC'D' + B'CD' + A'BCD + BC'D	[5M]	2			
	b)	Draw and explain about half-adder and full-adder with neat sketches.	[5M]	2			
		OR					
5.	a)	Simplify the following Boolean functions using <i>Karnaugh</i> maps: $F(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$	[5M]	2			
	b)	Design and implement BCD to Excess-3 code converter.	[5M]	2			
	1	UNIT-III					
6.	a)	Using 8:1 multiplexer realize the Boolean function: $T = f(w,x,y,z) = \Sigma(0,1,2,4,5,7,8,9,12,13)$	[5M]	3			
	b)	Implement the following two Boolean functions with a PLA: $F_1(A,B,C) = \sum m(0,5,6,7)$; $F2(A,B,C) = \sum m(0,3,5,7)$	[5M]	3			
		OR					
7.	a)	With the help of a logic diagram and a truth table, explain a 3-line to 8-line decoder.	[5M]	3			
	b)	Briefly explain about PLDs.	[5M]	3			
UNIT-IV							
8.	a)	Draw and explain about the D-Latch Flip-Flop and the clocked T Flip-Flop.	[5M]	4			

	b)	Convert SR flip-flop to JK flip-flop with an example.	[5M]	4				
OR								
9.	a)	Write the differences between combinational and sequential circuits.	[5M]	4				
	b)	With neat sketches explain the JK flip-flop.	[5M]	4				
UNIT-V								
10.	a)	Design and explain a 4-bit ring counter using D-flip flops with relevant	[5M]	5				
		timing diagrams.						
	b)	A clocked sequential circuit with simple input X and single output Z produce	[5M]	5				
		an output $Z = 1$ whenever the input X completes the sequence 1 0 1 1 and						
		overlapping is allowed.						
		i) Obtain its state - diagram						
		ii) Obtain its minimal state -table and design circuit with D- Flip-Flop						
	OR							
11.	a)	Design a MOD-10 ripple counter.	[5M]	5				
	b)	With an example explain the procedure for conversion of Moore machine to Mealy machine.	[5M]	5				
1	1			1	1			

R18
