PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 SWITCHING THEORY AND LOGIC DESIGN
(ECE Branch)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1	a)	Convert $(11010.11)_{2}$ into decimal.	$[2 \mathrm{M}]$	1	
	b)	What are don't cares?	$[2 \mathrm{M}]$	2	
	c)	List the applications of PAL and PLA.	$[2 \mathrm{M}]$	3	
	d)	Compare latch and flip-flop.	$[2 \mathrm{M}]$	4	
	e)	Distinguish between Moore and Mealy Machines.	$[2 \mathrm{M}]$	5	

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Represent the following numbers in decimal number system: (i) (1010101) ${ }_{2}$ (ii) $(26.24)_{8}$	[5M]	1	
	b)	Implement the Boolean function: $F=x y+x^{\prime} y^{\prime}+y^{\prime} z$ using with NOR and inverter gates.	[5M]	1	
OR					
3.	a)	Represent +35 and -35 in sign magnitude, sign 1's complement and sign 2's complement representation.	[5M]	1	
	b)	Simplify the following Boolean function into (i) sum-of-products form and (ii) product-of-sums form: $F(A, B, C, D)=\sum(0,1,2,5,8,9,10)$	[5M]	1	
UNIT-II					
4.	a)	Simplify the following Boolean functions, using Karnaugh maps: $F=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A C^{\prime} D^{\prime}+B^{\prime} C D^{\prime}+A^{\prime} B C D+B C^{\prime} D$	[5M]	2	
	b)	Draw and explain about half-adder and full-adder with neat sketches.	[5M]	2	
OR					
5.	a)	Simplify the following Boolean functions using Karnaugh maps: $F(w, x, y, z)=\sum(0,1,2,4,5,6,8,9,12,13,14)$	[5M]	2	
	b)	Design and implement BCD to Excess-3 code converter.	[5M]	2	
UNIT-III					
6.	a)	Using 8:1 multiplexer realize the Boolean function: $T=f(w, x, y, z)=$ $\Sigma(0,1,2,4,5,7,8,9,12,13)$	[5M]	3	
	b)	Implement the following two Boolean functions with a PLA: $\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=$ $\sum \mathrm{m}(0,5,6,7) ; \mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(0,3,5,7)$	[5M]	3	
OR					
7.	a)	With the help of a logic diagram and a truth table, explain a 3 -line to 8 -line decoder.	[5M]	3	
	b)	Briefly explain about PLDs.	[5M]	3	
UNIT-IV					
8.	a)	Draw and explain about the D-Latch Flip-Flop and the clocked T Flip-Flop.	[5M]	4	

	b)	Convert SR flip-flop to JK flip-flop with an example.	[5M]	4	
OR					
9.	a)	Write the differences between combinational and sequential circuits.	[5M]	4	
	b)	With neat sketches explain the JK flip-flop.	[5M]	4	
UNIT-V					
10.	a)	Design and explain a 4-bit ring counter using D-flip flops with relevant timing diagrams.	[5M]	5	
	b)	A clocked sequential circuit with simple input X and single output Z produce an output $\mathrm{Z}=1$ whenever the input X completes the sequence 1011 and overlapping is allowed. i) Obtain its state - diagram ii) Obtain its minimal state -table and design circuit with D- Flip-Flop	[5M]	5	
OR					
11.	a)	Design a MOD-10 ripple counter.	[5M]	5	
	b)	With an example explain the procedure for conversion of Moore machine to Mealy machine.	[5M]	5	

